Loading...

Oxidative Stress Induced Gene Expression Via Nrf2

PAG Title Oxidative Stress Induced Gene Expression Via Nrf2
PAG ID WIG000258
Type P
Source Link MSigDB
Publication Reference NA
PAG Description Reactive oxygen species (ROS) can damage biological macromolecules and are detrimental to cellular health. Electrophilic compounds, xenobiotics and antioxidants are sources of reactive oxygen species, creating oxidative stress that can harm cells. Enzymes are involved in the Phase II detoxification of xenobiotics to reduce cellular stress include glutathione transferases, quinone reductase, epoxide hydrolase, heme oxygenase, UDP-glucuronosyl transferases, and gamma-glutamylcysteine synthetase. Expression of these genes protects cells from oxidative damage and can prevent mutagenesis and cancer. Transcription of these enzymes is coordinately regulated through antioxidant response elements (AREs). Nrf2 (NF-E2-related factor 2) and Nrf1 are transcription factors that bind to AREs and activate these genes. Inactive Nrf2 is retained in the cytosol by association a complex with the cytoskeletal protein Keap1. Cytosolic Nrf2 is phosphorylated and translocates into the nucleus in response to protein kinase C activation and Map kinase pathways. In the nucleus, Nrf2 activate genes through AREs by interacting with transcription factors in the bZIP family, including CREB, ATF4 and fos or jun. Nrf2 activation of genes is opposed by small maf proteins, including MafG and MafK, maintaining a counterbalance to Nrf2 and balancing the oxidation level of the intracellular environment.
Species Homo sapiens
nCoCo Score 773
Base PAG ID WIG000258
Human Phenotyte Annotation
Curator PAGER curation team
Curator Contact PAGER-contact@googlegroups.com
Gene ID Gene symbol Gene name RP_score
Gene A Gene B Source SCORE

Gene A Gene B Mechanism Source
Related PAGs